
Whitepaper by
Berty Hooyman, Chief Architect, Mphasis
Suresh Nair, Principal Consultant – Consumer Banking, Mphasis

Information & Knowledge
Management in the Age of
Artificial Intelligence

Contents

1	 Introduction	 1

2	Observation: We are Creating Very Little New Information –	 1

	 Just Directing the Movement of Information
	 2.1		 Adapting to/Adopting the Change	 1

3	Observation: Why Does Each System Have its Own Language?	 2
	 3.1 		 Recommendation: Force IT and IT Systems to Adopt “Public” Languages	 3

4	We Have Broken the Data/Information/Knowledge Pipeline	 4
	 4.1		 The Traditional DIKW Pyramid	 4

	 4.2		 The Disrupted Pyramid	 5

5	Observation: Current IT Practices Actively Contribute	 6

	 to the Loss of Knowledge
	 5.1		 Impact 1: Users Become Dumber	 7

	 5.2		 Impact 2: IT Teams Bleed Business Knowledge	 8

	 5.3		 How Do We Fix This?	 8

6	Observation: The Pool of Traditional Experts is Shrinking	 9
	 6.1		 Observation: The New Knowledge Worker: Conductor of an Orchestra of Agents	 10

7	Recommendation	 10
	 7.1		 A New IT Ecosystem Paradigm	 10

8	Example 1: The Everything Calendar & Time Management System	 12
	 8.1	 How and Why this Addresses Observed Issues	 13

9	Example 2: Consumer Bank Back Office	 14
	 9.1		 Limited, but Complex Scope for Discussion	 14

	 9.1.1		 Green Field, Not “Brown Field”/Current, Not Future	 15

	 9.2 		 Agents and Capabilities in the Banking Ecosystem	 15

	 9.3		 Party & Legal Entity Directory	 17

	 9.3.1		 Setup of the Capability	 17

	 9.3.2		 Usage Scenario	 18

10	 In Conclusion	 18

11	 Appendix	 19
	 11.1		 Loan Application – How Permission to Share Data is Handled	 19

	 11.2		 Shared Data within the Enterprise	 19

	 11.3		 Persistence Store Types	 20

1. Introduction
Every major technological advancement—from fire and agriculture to the Internet and general-purpose AI—has been
accompanied by deep cultural and societal changes. These changes are not always recognized when they happen.

In this paper, we focus on a very small subset of changes related to information and knowledge and some of the
radical changes we think are being missed.

2. Observation: We are Creating Very Litle
	 New Information – Just Directing the 			
	 Movement of Information
The speed and ease of much of what we do today stem from the seamless integration and data exchange
capabilities of our service providers. For instance, when applying for a loan, all we need to provide is a unique
identifier and permission for credit agencies to share our data. Loan approval hinges on granting loan providers and
servicing agencies authorization to share data with credit agencies, allowing the process to proceed smoothly.
A more detailed description is provided in the appendix [see: 7.1].

This seamless data exchange has become so fundamental to our lives that when faced with a form containing
hundreds of fields, we often question whether it is worth the effort. In the retail industry, organizations maintain
descriptions of goods as “Stock Keeping Units” (SKUs) in their retail management systems. In the past, armies of
people in back offices manually entered this data. Today, standards like Universal Product Codes (UPC) enable the
seamless exchange of information about retail goods across every layer of the supply and retail chain, eliminating the
need for manual data entry.

To simplify logistics tracking, manufacturers include RFID tags in packaging or attach them to products.
Internet of Things (IoT) technology can read these tags and track the movement of individual units from the factory
to the point of sale. With precise knowledge of unit locations, we can manage inventories more effectively, with
systems automatically restocking items when they run low or reducing the inventory of products that are not selling.

2.1 Adapting to/Adopting the Change
Today, the traditional ecosystem between customer and supplier involves IT systems talking to each other, with the
mirror of the process implemented on both sides.

SupplierCustomer

Party

Account

Orders &
requests

Statements

Payments

Inventory

Product

Party

Account

Orders &
requests

Statements

Payments

Inventory

Product

Register with
supplier

Customer
onboarding

Vendor setup

Order
product

Get vendor’s
part numbers

Capture
order

Issue invoice

Make
payments

Process rcvd
payments

Fulfill orderFulfill order

Figure 1: Simplified view of traditional customer/supplier ecosystem | 1

In this model, data is replicated on both sides, with significant operations on both sides to reconcile “inputs”
(e.g., orders, statements) against “outputs” (e.g., shipments, payments).

Today, we have a number of “platform” ecosystems that provide an alternative to this model, where shared data is
radically simplifying this ecosystem. The following diagram shows what this looks like:

This significantly reduces the operations footprint, without loss of control by either party.

The most common versions of this are dependent on B2B platform companies like Alibaba, Amazon Business,
eWorldTrade, etc. Web3 (see: https://en.wikipedia.org/wiki/Web3) is aimed at democratizing this and eliminating the
need for platform companies to broker the relationships.

The appendix includes a discussion on how this would be achieved within the enterprise. See: 7.2 Shared data
within the enterprise.

3. Observation: Why Does Each System 			
	 Have its Own Language?
If we accept the premise of the previous observation and accept that “no IT application is an island,” it is surprising
how little this concept has influenced the actual process of designing and maintaining IT systems. If all the
information we handle already exists somewhere in the “ether,” why do we find ourselves modeling it anew each
time we build a system?

Organizations that have embraced the digital age extensively use APIs to communicate with their partners,
customers and peers. This is crucial for many modern innovations such as just-in-time supply chain management,
hyper-personalization and “composable enterprises” like Amazon or Apple, as well as digital businesses like
FinTechs. In nearly every industry, formal standards have evolved to make interactions predictable and scalable.
The common language used by practitioners has been embedded into these APIs.

However, within organizations, we insist on creating our own “language.” Every organization insists on developing
complex internal models with their own layers of governance. Imagine for a moment that we are comfortable using
English to talk to our neighbors and friends, but insist that within our homes, we must speak our own made-up
language because our family is “special” and does things that no other family does.

Distributed ledger

Orders &
requests

Payments

SupplierCustomer

Order
product

Make
payments

Party trust registry

Party

Inventory

Receive
inventory

Logistics company

Shipment
details

Handle
shipment

Product

Ship order

Inventory

Figure 2: Simplified customer/supplier ecosystem with shared data

2 |

https://en.wikipedia.org/wiki/Web3

Instead of inventing a completely new language, what if we simply added a few words for things that are absolutely
unique to us and our shared values, and for everything else, we adopt the common language? Nearly every IT
project we work on feels like we are discovering a shared language from scratch in each project. What is truly
perplexing about this situation is that the business users in the organization are already comfortable using
industry-standard terminology for what they do. The made-up language is one created by the IT teams to capture
their understanding of the business language.

3.1 Recommendation: Force IT and IT Systems to Adopt “Public” Languages
Most industries have published standards for APIs that have wide adoption. These standards are managed by
industry governance bodies, go through detailed peer reviews and are tested through real-world usage in APIs
for interchange.

A few examples:

Standard Domain Highlights

ISO 20022
Banking and
finance

Addressed mismatches between different standards that had evolved independently.
Provides a master list of terms and data structures covering all banking APIs and
hand-off standards. Also adopted by BIAN as the data model backbone.

ACORD Insurance
Covers business processes, product models and data exchange formats that enable
standardization and automation across insurers and intermediaries. Used extensively
for exchanging insurance policy data, licensing, commissions and transactions.

SIRI, TCIP,
GTFS

Public
transportation

Exchange real-time transit schedules, vehicle locations and passenger information.
Supports communication between transit systems, agencies and the public, enabling
interoperability and real-time data sharing.

GS1
Standards

Supply chain

GS1 provides global standards for uniquely identifying products, locations and
logistics units using identifiers like GTIN (Global Trade Item Number),
GLN (Global Location Number) and SSCC (Serial Shipping Container Code).
These standards underpin barcodes and RFID tags, enabling consistent tracking
and data sharing across supply chains worldwide.

ICD-10-CM,
CPT, HCPCS,
LOINC,
SNOMED CT

Healthcare

ICD-10-CM: An illness and diagnosis classification system developed by the World
Health Organization.

CPT: The American Medical Association (AMA) developed CPT (Current Procedure
Terminology) for medical operations and services, which is primarily used in billing.

HCPCS: Healthcare Common Procedure Coding System is a variant of CPT and
is more comprehensive.

LOINC: For laboratory testing and clinical observations,
LOINC (Logical Observation Identifiers Names and Codes) is used.

SNOMED CT: Systematized Nomenclature of Medicine Clinical Terms codes include
symptoms, procedures, diagnoses, family history and more.

One pre-requisite for this future model is to force the adoption of industry standard terminology deep into all internal
systems. It means that “secret” languages used between internal systems will be replaced with common languages.

There will be some initial pain as “shorthand” terms are replaced with industry-standard terms. People who learn
languages quickly will tell you that you truly learn a language when you use the language in your own head when you
think. In the same way, this only works once the systems use the industry standard terms within the systems, not
just at the boundaries.

Let’s take a simple example from the banking industry.

Account: A legal contract between two legal entities where one legal entity (provider) commits to provide a set of
services to another (consumer).

| 3

If we follow the formal semantic model, we end up with a very different model of the world than we would see in
traditional banking systems.

•	 There is no such thing as a “customer”, just parties involved in contracts

•	 “Account” tracks the contractual terms between the customer and the bank, with pricing for the transactions
facilitated by the services

•	 Transactions are events that move money between parties, similar to how goods are moved between companies
in traditional trading systems

•	 The “value” of the cash is tracked separately, just as the value of inventory is tracked in traditional systems

Building a system like this eliminates a huge percentage of the problems that banks face today with their IT systems.
By focusing on “data structures” and not “data meaning”, we have introduced problems that require layers upon
layers of additional processing. By reducing systems to this construct, we radically simplify the ecosystem.

4. We have Broken the Data/Information/			
	 Knowledge Pipeline
4.1 The Traditional DIKW Pyramid
Most organizational ecosystems are built on the assumption of the existence – implicitly or explicitly – of a DIKW
pyramid (see https://en.wikipedia.org/wiki/DIKW_pyramid).

Legal person

Natural person

Legal entity

Provider

Consumer

Work product

Service

Legal contract

Account
Provided to

Provided by

Guarantees

Event

Transaction

Financial
transaction

Resource

Cash (as
inventory)

Financial value

Cash (as
value)

Facilitates

Moves Tracked as

prices

+ Context

+ Understand

+ Learnings & experience

Figure 3: Simplified semantic model of account and transaction

Figure 4: The DIKW pyramid4 |

https://en.wikipedia.org/wiki/DIKW_pyramid

Work

Capture new
data

Add
context

Requires months
or years

Data
Information

Knowledge

Action
Outcome

Guide

Capture
learnings

Understand

Execute

I want a new
shirt

Size, color
US Size
L = EU 42

Delivery takes 4 days on
average. Shirts should be

packed in plastic.

Was delivery OK?
Was customer happy?

Did size match?

Workflow

Shirt is pulled from
inventory and

shipped

Figure 5: Traditional DIKW-based ecosystem

Data Raw Values 42 2001-04-12 John Smith

Information
Adding context
& definition to
values

Number of people in
a meeting

Date of birth Customer name

Knowledge

Understand
implications,
inferences &
deductions

Attendees required to
approve project plan

Age is 23 years in Jan 2025

Is legally allowed to vote,
drive or be served alcohol

Formal name captured from
a government-issued ID
through a controlled process

Wisdom

Enriched through
experience.
Not explicit in
data, but arrived
at through
observation.

We need a voting
system to save time.
We must have a task
tracker to control the
process.

90% of wage earners in
this age range have limited
disposable income, but can
be convinced to save 20%
of income

Is a very common name in
England and some parts
of the US and Canada.
Additional information is
required to uniquely identify.

The DIKW pyramid is the foundation for information management systems that are used extensively today.

Data enters the ecosystem through work and is stored in IT systems with context as information. The generation
of knowledge from information requires large quantities of data and analysis by experts. Knowledge is required
to be justified.

 This knowledge drives actions or “best practices”. The outcomes through the following of best practices become
learnings, which is data in its own right.

4.2 The Disrupted Pyramid
Over the last 15 years, a new breed of companies appeared that have used technology to deconstruct traditional
businesses in a way that enables faster innovation. They have deconstructed the organization into technology
powered business capabilities integrated through APIs.

The cost of rapid transformation has been decreasing fairly consistently over the years. In extreme cases,
organizations are often driven by intuition – often called the “move fast and break things” culture. In this subset
of organizations, success is narrowly defined based on delivered stakeholder value.

| 5

This has delivered transformational organizations like Google, Amazon, Microsoft, etc. Most large enterprises are
actively retooling themselves to adopt this culture; whether explicitly or implicitly.

One of the fundamental tenets of the approach is that past knowledge is not trustworthy. Teams are encouraged to
stretch the boundaries of past wisdom and see what happens. This has directly led to a much faster rate of change
than any time in human history. Society itself becomes “beta testers” for new technologies. Rather than predicting
and preparing for the potential impacts of change, we try out the change and react rapidly to negative impacts as
they happen.

Part of what supports this is the huge foundational knowledge base in areas like the sciences, mathematics and
economics. Given these rock-solid truths, we have much less fear of the unknown when trying out new things.
We know the physical limits of anything we try to do. We have accurate economic models to assess the real value
of any real asset and to judge how intangible assets can be valued.

5. Observation: Current IT Practices Actively 		
	 Contribute to the Loss of Knowledge
IT systems automate what used to be manual tasks. Experts create requirements that tell developers what the
systems need to do. Developers build the system to meet these requirements. Developers do not become experts
in the domain as they build these systems. As IT ecosystems have grown, and more work has moved to large
outsourcing firms, additional layers have appeared that increase the separation between subject matter experts
and developers. Developers just think of system as moving data around, without understanding what the data
means or does.

Work

Capture new
data

Add
context

Requires months
or years

Data Information

ActionOutcome

Guide

Capture
learnings

Execute

I want a new
shirt

Size, color
US Size
L = EU 42

Was delivery OK?
Was customer happy?

Did size match?

Change packaging to thick
paper. Lease warehouses

close to high volume
markets.

Workflow

Shirt is pulled from
inventory and

shipped

Lower cost of delivery,
reduce waste

Knowledge
Understand

Stakeholder
value

Intuition

Delivery takes 4 days on
average. Shirts should be

packed in plastic.

Figure 6: The “move fast and break things” data ecosystem

6 |

Work

Business Ecosystem

IT Ecosystem

Subject
matter
expert

Interpret
as requirements

Scenarios

Bytes in
Bytes out

Build IT
system

Knowledgeable
Data consumer

Training in
how to

interpret data

• Gather KYC data

• BSA leadership
• Compliance SME

• Regulations
• Policies

• BSA ops

Instruction
Capture Data

Figure 7: A typical application development ecosystem

Figure 8: Rules for IRS computation of tax (source: From 1040 Instructions, 1969)

5.1 Impact 1: Users Become Dumber
Before IT systems were in place, each participant in the ecosystem was expected to have the knowledge required to
convert data to information. Imagine trying to file your taxes on your own before the advent of modern tax systems.
As a sample, old US instructions for filing taxes can be found here: https://www.irs.gov/pub/irs-prior/i1040--1969.pdf

Rules for IRA computation of tax— If line 15a is under $5,000 and consisted only of wages
subject to withholding and not more than $200 of dividends, interest and nonwithheld wages,
and you are not claiming any adjustments on line 15b, you can have IRS figure your tax by
omitting lines 16, 17, 18, 20, 21, 22, 23, 24, 25 and 26 (but complete line 19). If you are filing a
joint return, show husband’s income and wife’s income separately in the space to the right of
line 15c. Identify husband’s income by marking (H) and wife’s income by marking (W).
Note: If the IRS figures your tax and surcharge, the law does not permit the IRS to allow you the
benefits of: (1) the retirement income credit, (2) head of household or surviving spouse status,
and (3) minimum standard deduction, if you are married and filing a separate return. If you are
entitled to any of these benefits, it is to your advantage to figure your own tax and surcharge.

| 7

https://www.irs.gov/pub/irs-prior/i1040--1969.pdf

5.2 Impact 2: IT Teams Bleed Business Knowledge
A bigger problem is that the IT systems are not
designed to manage the knowledge that was
captured from domain SMEs, and is definitely
NOT captured as knowledge in the IT systems.

Business rules are converted into standard code
constructs like IF statements, FOR loops or
more complex algorithms. Code is designed
to drive consistent processing of data, not to
retain knowledge.

As systems evolve over time, the knowledge that
the Subject Matter Experts (SMEs) put in at the
start becomes dated, and eventually outdated
and irrelevant. Every change made to the system
reduces the value of the original documentation.
In many cases, the documentation was not
preserved, making matters worse.

Besides business knowledge, IT systems also
require a lot of technology knowledge. Systems
work on data in databases, present data in user
interfaces, exchange data with other systems
through files and APIs, etc.

The modern enterprise system typically involves
hundreds of different technologies, even if they
use a single language like Java, C# (.Net) or
Python. Enterprises provide developers with
frameworks that take care of making these

Today, most people using automation systems to file their taxes have not read the code. The tax code has grown
incredibly complex. The same IRS guideline today runs to 100s of pages, with a wide variety of special cases
described and handled.

However, the vast majority of people filing their taxes do not understand the tax code, and most have never read it.
They rely on the system to ask them questions that they can understand.

The democratizing of tax filing has also resulted in a “dumbing” of the average person about taxes.

IT Ecosystem

Subject
matter
expert

Build
team

Operate
team

Forgotten
at release

“tradition!”

System
to run &
maintain

Requirements
& certi�cation
tests

“how?”

“why?”

Time 

Figure 9: Most IT ecosystems lose knowledgetechnologies easy for developers to use.
However, they fall into the same trap,
resulting in “dumber users” – i.e., developers do not understand the technologies they are manipulating through the
frameworks and “loss of knowledge”, as the developers of the frameworks move on to other projects.

5.3 How do We Fix This?
We need to embed knowledge into the IT systems that we are developing. This means creating dedicated knowledge
repositories and forcing them to become part of the development pipeline. The following shows a model that we have
put in place for a number of projects.

8 |

SQL DB’s NoSQL DB’s

Messages API’s

UI forms Code shells

Knowledge
repository

Existing
databases

Copybooks,
code

variables

Relearn

Relearn existing
business rules

Relearn

Speci�cations

Architects Developers

Code
generators

Metadata
annotations

Automated
quality control

Developers

Additional
code

Packaging
tools

Packaged
release

Capture best
practices for
banking data

structures

Relearn existing
 existing data

De�ne best
 practices

& architecture
patterns

Create
code

generators

Implement
business logic

Generate
release
artifacts

Generate
code

De�ne “to be”
data dictionary

& schema
Capture “to be”
domain service

de�nitions

Capture
“to be”

experience
APIs

Capture
“to be”
process

�ows

Capture
non-functional
requirements

De�ne
implementation

speci�cs

Data
governance

Data
governance

Guru’s
& SME’s

Transformation
team

Deployment
Instructions
& scripts

Figure 10: Making a knowledge repository the core for IT system generation

We seed the knowledge repository using standard industry models. A huge percentage of functionality in systems can
be fully described by knowledge that is in the public domain.

Another source of knowledge is legacy source code. AI tooling is used to relearn business rules and data structures
from legacy systems.

The functionality and behavior of the system; and non-functional requirements (volumes, SLA guarantees, usability
mandates) are also captured and encoded.

Coding automation and modern prompt engineering tools can be used to generate a large percentage of code.
Only a small percentage needs to be developed by hand.

In this ecosystem, since knowledge drives the code, any change must start from updating the knowledge model.
The knowledge model is fed into AI agents that then generate the new code. This ensures that & mandates the
knowledge model always remains current.

6. Observation: The Pool of Traditional
	 Experts is Shrinking
Along with the erosion of the traditional data/information/knowledge/wisdom pyramid, we are also seeing the pool of
what we would traditionally call experts dwindling.

A generally accepted definition of an expert is someone who has internalized years of accumulated human knowledge
and has synthesized their own perspective. They do not just repeat past learning, but are able to synthesize new
solutions from their knowledge,; which in turn increases their knowledge – becoming wisdom.

There are a number of well-known reasons for the reduction in the expert pool:

Problem 1: Knowledge barrier is too high, and growing
As systems have become more complex, individuals need to amass large amounts of knowledge to become even
basic experts in a field.

Think of auto mechanics today; who are required to have deep engineering expertise to handle complex engines;
software engineers to handle the complex control systems, electricians to handle the complex wiring handling all the
sensors and automation; and chemists to handle the unique bonding agents and adhesives used in the different kinds
of seals and joints.

| 9

Problem 2: Partially outsourced brains
Another major shift has come from the way that people learn and use knowledge. Ubiquitous access to smart phones
and the Internet has changed the way in which people find and use knowledge. Rather than remembering things,
people have “outsourced” part of their memory to the internet. They have the confidence that they can find very topical
knowledge when they want it, exactly at the time they need it,; at next to no cost.

Today, think of how many people repair things after watching YouTube videos. It is really scary when we realize that the
same behavior we use to fix a leaking toilet is being used to building transaction processing systems.

Problem 3: End of “Seek, and you shall understand”
The act of searching for the right knowledge for a task helps the consumer understand the knowledge better.
One learns to ask the right questions, and through questioning, get better at understanding the results of their search.

AI agents automate the search and aggregation of knowledge based on its best guess on what we are looking for.
AI agents use their knowledge of the context, skill level of the user and knowledge of what similar searches are
happening around the world to fill in the gaps in the questions being asked.

The user becomes the embodiment of the sentiment - I do not know what I do not know.

It may be that knowledge has truly become democratic and available to everyone. The traditional expert may no longer
have a true role. It may take a generation or more for the long-term impact of this loss of traditional experts to be
fully understood.

6.1 Observation: TThe New Knowledge Worker: Conductor of an Orchestra
 of Agents
What is evolving instead is a new type of expert, one who is solely an expert in stitching tools together. They live in
a symbiotic relationship with AI agents. They have a clear understanding of what they want to achieve and leverage
combinations of AI agents to achieve it. This is often worded as “AI Will Not Replace Humans, AI Will Replace Humans
Who Don’t Use It” (see: https://www.outlookbusiness.com/corporate/ai-will-not-replace-humans-ai-will-replace-
humans-who-dont-use-it-says-mphasis-ceo-nitin-rakesh).

Just as we see people outsourcing part of their intellect to smartphones, we predict the new experts will use AI as force
multipliers, allowing them to become experts in real-time, in dozens of distinct domains, working together in
real time.

Imagine Augmented Reality devices such as the Microsoft HoloLens or Apple VisionPro tapping into the huge platform
ecosystems these organizations have access to, along with dozens of intelligent agents that perceive all aspects of
the user’s world through the device’s capabilities. Sight, sound and touch are encoded in real-time. The digital world
streams in and out through multiple APIs.

If the user has an army of agents working with them in real-time and ingesting all this input in real-time, and helping
the user absorb every aspect of the inputs, and responding digitally to the user’s will, the results may appear almost as
magic to fellow humans who are not able to adapt to this kind of new world and ways of working.

7. Recommendation
7.1 A New IT Ecosystem Paradigm
The most important recommendation we are making is a completely new paradigm for IT systems. The paradigm is
summarized in this diagram.

10 |

https://www.outlookbusiness.com/corporate/ai-will-not-replace-humans-ai-will-replace-humans-who-dont-use-it-says-mphasis-ceo-nitin-rakesh
https://www.outlookbusiness.com/corporate/ai-will-not-replace-humans-ai-will-replace-humans-who-dont-use-it-says-mphasis-ceo-nitin-rakesh

Business + IT Ecosystem

One capability

Users

Untrained /
semi-trained human

Composed
solution

Virtual assistant

Automated
assembly

Task based
capability

Task’ data
Interpret

U
nderstand

Knowledge
How?

Why?

Automated

Outcome

Evolve

What?

Why?

What?

Figure 11: The new knowledge worker ecosystem

User: Untrained
human

The changes mentioned earlier with users losing domain knowledge are irreversible. We also want
to ensure that everyone benefits from automation. To this end, systems must be able to cater to
any kind of user, whether they know the domain or not. It needs to cater to gaps in knowledge and
protect the user from their own lack of knowledge.

User: Virtual assistant
Increasingly, humans will use virtual assistants to get work done. Rather than interacting with
systems themselves, humans will interact with virtual assistants, which in turn will interpret the ask,
and instruct the applications to get work done.

Composed solution /
automated assembly

A critical change required is to get past the idea of “fixed” collections of applications, and allow
assemblies of capabilities to be created in real-time to handle a task. The two examples in the next
section show this at work.

One capability
To allow for the dynamic assembly of solutions, instead of applications, with their own user
interfaces, we need to think in terms of individual capabilities that can be assembled in different
ways. Capabilities perform single tasks and own their own data.

Capability API
Functionality and data are private to the capability and can be accessed only through APIs provided
to the outside world.

Capability level
knowledge

Knowledge needs to be encapsulated within capabilities and should be accessible just like APIs.
However, knowledge cannot be updated via APIs, only by the capability owners. To understand
how the capability is used (i.e., to capture context), the capability owners will require additional
information in the API layer to capture context.

Outcome tracking
and evolution

To provide for continuous improvement, the system needs to understand whether the outcomes
required by the users have been met. This will help continuously evolve both the assembly of
solutions and the capabilities themselves.

The examples below show these in use.

| 11

8. Example 1: The Everything Calendar & 			
	 Time Management System
Let’s imagine I want to have a tool that provides me with 100% of everything needed to manage my time, ensuring that
I get all my chores done, never miss a meeting, a flight or a child’s music recital.

This is much more than a calendar – it is a living system that helps track every single thing I need to do.

Let’s take 2 sample scenarios:

Scenario 1: Grocery side trip
•	 I get a call to pick up milk on the way home, and that needs to be added to the calendar, including travel time to

the store, time for shopping and time to get home.

•	 An optimizer should kick in, and add anything else that I need to pick up from the store – even things that I might
not need immediately.

•	 Since my electric car was not at full charge in the morning, the optimizer should pick up that I need to charge,
and pick a supermarket with charging available outside the store.

Scenario 2: Annual budget forecast
•	 I have never had to submit a budget before, but after a recent promotion to unit head, I am required to prepare

the budget for my group for the coming year.

•	 I am told today (Tuesday) to have the budget ready for review by the department head by Friday.

•	 My agent figures out the tasks involved in creating a budget for a unit like mine, adds the tasks to my calendar
with dependencies, and estimated times.

•	 The agent flags dependencies on things I need from my colleagues, and adds time to request it from them
+ for me to review and incorporate it into my budget.

•	 The system checks calendars for my colleagues to create invites aligned to my calendar. It finds that one of the
key people in the department is off till Thursday. The calendar immediately puts the budget deliverable at risk,
and suggests work arounds. This involves my spending additional time to gather the inputs myself.

•	 Lower priority tasks in the period are postponed to after the budget submission date to make space for the
new tasks.

Here’s one possible ecosystem that would support this, following the approach suggested above.

KnowledgeTask dataCapability
Intelligent agents &
Virtual assistants

Presentation /
Visualizer

Input capture +
interpretation

Planner

Optimization &
prioritization

Team organizer

Interaction
manager

Composed
solution

Automated
assembly

Reminders

GPS/route
planning

Car
automation
system

Charging
ecosystem

Team
calendar

Project
planning tool

Budgeting
tool

Team
management

Stores where available, location in store
What to buy,
completed items

Store locations, nearby facilities,
travel times, busy hours, home

Current route, future
schedule

Current location, battery level, range in
current weather, charge time

Current location,
shared route from GPS
system

Locations, availability, busy times,
support for EV

Charging session,
reservations

Task breakdown for budget exercise,
normal task duration, allocations

Current
project plan

Holidays, competing priorities,
standard meetings

Availability, leaves,
absences, travel

Inputs required, sources for the
information, computation tools

Current budget

Roles, tasks performed, data
owned, outcomes owned

Team members
& roles

Figure 12: Agents and capabilities in the calendar ecosystem
12 |

Scenario 1 (Calendar): Interactions between
agents & capabilities

Scenario 2 (Budget): Interactions between
agents & capabilities

The following is an extremely simplified view of how these agents and capabilities would interact to achieve the
required outcome.

“Buy milk” Task: buy milk

Task: buy milk

K: stores where
recently bought

K: current location
Route to stores

Interference:on way home
Stores on route

New route:to store
as stop

Battery level,
projection for trip

Interference: new task:
charge car

Competition for
time / new task

Competition for
time / new task

Add to schedule

Optimize destinations
Charging task

Store services
Charging locations
Distance between them

New route: to store
as stop

Update tasks

ReservationInteraction request

Record taskTask: Prepare unit’s budget

Expected inputs, sources

Competition for
time/new task

Add to schedule
Add tasks to get inputs from
all team members

Task breakdown,
normal effort + time

Task breakdown,
normal effort + time

Build out schedule

Pull skills + roles +
current role owners

Request to cascade tasks

to all team members

Assign tasks to all role
owners

Trigger scheduling of
joint meeting

Coordinate and line up
meetings

Meeting schedule Interference: Probability of
meeting budget schedule

Forecast risks and

delays to the schedule

Inform of risks and

schedule changes if any

8.1 How and Why this Addresses Observed Issues
This approach recognizes and addresses many of the problems observed in traditional systems:

•	 We are not creating new information: The approach inherently recognizes that we are moving data around. It avoids
duplication or re-capture of data. Each system owns its own data and knowledge. We rely on the transient “memory”
of the agents that are stitching the tasks together to pull the data together the instant we need it, then forget it once it
is done. What needs to be remembered is remembered in each system that owns the related task data.

•	 The DIKW pyramid is gone: Each domain captures knowledge relevant to one area, irrespective of usage
scenarios. This allows for much deeper capture of specialized knowledge. The agents that assemble capabilities
together rely on this knowledge rather than attempting to create deep knowledge models internally.

•	 Data is fragmented, in good way: Rather than thinking of data fragmentation as a problem, we are creating
an ecosystem that assembles fragments of information when we need them. The intelligent agents create
assemblies of data where and when they need it.

•	 Breaking out of the GIGO paradigm: The ecosystem is deconstructed into smaller units each of which
understands “what” it does. When assembling capabilities together, the system clearly understands exactly
what it is trying to accomplish.

•	 Business knowledge is retained: Since capabilities are built around “atomic” business capabilities, the APIs
expose data in business terminologies and knowledge retention is built into the capabilities, business knowledge
is retained explicitly.

| 13

•	 Traditional experts replaced with knowledge sources: The agents pulls data from multiple sources, many
that the user would not of thought of at all. Rather than expecting the user to “ask” for information,the system
is asking “is your knowledge useful for this task”.

•	 Support for the new knowledge worker: The example shows how the user has a clear force multiplier
experience, where many factors are considered and balanced seamlessly. The individual agents are working
towards helping the user achieving their goals, without making them think through each integration and task.

9. Example 2: Consumer Bank Back Office
It can be argued that the first example is already available to some extent in the Google/Android ecosystem and
is evolving in the Apple/Siri ecosystem. In the next example, let us consider the same kind of thinking within the
enterprise in the back office of a consumer bank.

In this example, we want to focus on the everyday stuff that happens in the background of daily operations of a bank.

For the purpose of this conversation, let’s use this simplified model of a consumer bank:

Income
• Fees for services
• “Spread” on currency conversion
Expenses
• People & systems
• Fraud losses

Income
• Interest & fees
Expenses
• Servicing fees

Income
• Revenue from external investments
Expenses
• Servicing fees

Deposits

Money borrowed from
the market

Capital

Short term loans

Longer term loans

“Cash in hand”

Short term liquid
investments

Assets, investments and
liens

Products:
• Short & long term deposits
• Payments & cash flow services

Products:
• Securitized lending (mortgage)
• Unsecured lending (credit cards,

auto loan, personal loans)

• Write-offs and losses • Write-offs and losses

Figure 13: Simplified supply chain model of a bank

9.1 Limited, but Complex Scope for Discussion
For the purpose of this discussion, let’s consider a few critical business tasks of the back office (IMPORTANT: this is
not everything that happens, but focuses on a few of the most critical items).

Traditionally, banks have been built around the key books and records that the bank maintains.

Customers are offered financial services such as checking accounts to manage cash and payments; credit cards for
short term credit lending, or payment ecosystems that help customers make or receive payments.

•	 Back-office tasks: Handling secondary tasks resulting from any front office/self-service operation that could
not be completed completely automatically. This does not imply that it requires human intervention – just that
additional steps are required that could not be completed in real-time.

	� E.g., A customer applies for a mortgage online. We need to decide if a home inspection is required, and if so, 		
	 schedule it.

14 |

•	 Record financial impact of events: Capture the impact on the bank’s own ledger, due from/due to partner
banks & the impact on the customer’s account balances.

	� E.g., When a new credit card is issued, record the potential exposure/risk that the bank is taking on through 		
	 the issuance of a credit line. In the card account, set the “available credit line” to the approved limit.

•	 Monitor and manage risk: Use traditional risk factors such as total income vs. fixed expenses, past behavior
and recent life events to forecast the customer’s potential future behavior. Keep track of the total risk in the bank’s
portfolio, allowing the bank to take on a few higher-risk customers if they can be offset by safer customers,
or where the potential upside is significant.

	� E.g., Look at the lifetime potential of college students when offering credit.

•	 Discretionary pricing: Where the product supports custom pricing for clients based on a comprehensive view
of relationship.

	� E.g., When establishing pricing for a small business owner, factor in revenue from the small business;, providing 	
	 preferential pricing to the customer.

9.1.1 Green Field, Not “Brown Field”/Current, Not Future
The consumer banking industry has been one of the earliest and widest adopters of computerized automation, and the
thinking in banks is driven by 60+ years of real-world experience. Let us use our new paradigm, throw everything out
and start again.

We are setting a few boundaries for this conversation:

•	 For the purpose of this discussion, we are not going to worry about backward compatibility or phased conversion.
It is not as hard to do this as it might appear on the surface, but is beyond the scope of this document.

•	 We are intentionally limiting the approach to technologies that are considered mainstream and stable today
(March 2025).

9.2 Agents and Capabilities in the Banking Ecosystem
To set up this ecosystem, we are NOT going to create a set of interconnected applications that serve different
functions. Instead, we are going to tell our agent empowered people what they need to achieve. They will work on the
tasks, trusting their intelligent agents to assemble themselves dynamically to complete them.

This is going to take a huge leap in thinking. It is ingrained in us that we need to build pre-integrated, stable
ecosystems for anything involving financial transactions. The worst thing that can happen with the calendar app is
that you miss a deadline. If a transaction is not recorded, or if we approve a transaction that is not allowed as per law,
our bank will face significant regulatory and legal challenges.

| 15

Figure 14: Agents and capabilities in the consumer bank ecosystem

For people in the know, at the first glance, this list looks exactly like the list of service domains we would implement
if we followed a microservices standard like BIAN (Banking Industry Architecture Network. See: https://bian.org/
servicelandscape-12-0-0/ & go to the Matrix View). However, the way they work in the agent-enabled model is
completely different from traditional banking systems.

Firstly, we are going to eliminate the idea of pre-building the ecosystem. Instead, we are going to have individual SME’s
talk to their own personal agents to create the capabilities

Let’s take an example to show how this would work:

16 |

KnowledgeTask dataCapability

Policy compliance
guarantee agent

Position keeping
agent

Task delivery
guarantee agent

Product &
relationship

management

Reference data
management

Financial event
capture &
processing

Regulatory
compliance

checks

Product
and service
suitability

External
transaction

events

Fees, interest
& other

internal events

Corporate
credit risk

management

Internal
position
keeping

Customer’s
position
keeping

Financial
accounting

Product
management

Customer
relationship

management

Customer
credit rating

Pricing

Party & legal
entity

directories

Checking and
savings

accounts

Credit line

Payment
instruments

Compliance assessments/
corrective actions/periodic
reassessments

Regulations/policies/limits/
required process controls

Suitability assessments/
rejections/exception
approvals

Risk tolerance/objectives/
customer’s experience

Transactions, clearing
events, settlement,
authorizations

Transaction & purchase patterns,
seasonality, money laundering and
fraud patterns

Fee & interest transactions/
terms & conditions/waivers &
exceptions & forgiveness

Fair lending and non-predatory
behavior regs & policies/market
lndices

Aggregated exposure/risk
assessments/external forces
/corrective actions

Risk modeling techniques/portfolio
diversity/market awareness

Cash position/due from & due to
counterparty FI’s/investment
positions/lien holdings

Treasury functions/clearing process
for counter parties/market
integration & participation

Deposits/credit utilization/
securitized assets/issued
instruments

Transaction to financial event
conversion/statement generation
practices

Bank’s general ledger & treasury
positions/equity liabilities,
revenues, expenses, assets

GAAP principles/asset valuation
techniques/bank’s value chain &
product specific value streams

Services provide/default contract
terms/standard collateral/ scripts
& templates

Customer needs addressed,
applicable regulations and policies,
product strategy

Relationships, relationship
events, life events, issues, advice
& recommendations

Relationship management
principles/micro-segmentation/
key life events & impacts

Risk factors considered:
e.g.,character/capacity/capital/
collateral/conditions

Entity (person, company) level risk
modeling & management/risk
portfolio management

Total relationship value/standard
service pricing/special pricing
conditions

Value and cost-based pricing
strategies/cost of services/lifetime
value forecasting

All customer details/
relationships between parties
refreshes of data

KYC and AML data requirements/
relationship and service data needs/
servicing data needs

Accounts/agreements & term
changes/account lifecycle events/
transactions

Customer needs analysis/product
design principles/portfolio
management principles

Available line/utilized line/
collateral & liens/collections &
write-offs

Credit behavior classification/
regulatory controls on issued
credit/asset value & liquidity

Devices (cards, wallets, etc.),
checks/wire events

Industry standards & association
policies for issued devices/PCI &
DSS requirements/ …

https://bian.org/servicelandscape-12-0-0/
https://bian.org/servicelandscape-12-0-0/

Figure 15: Set up using “Knowledge” from other capabilities

9.3 Party & Legal Entity Directory
A party database maintains a listing of people and companies, as well as critical facts about them.

There is nothing really banking centric about a party database. Nor is it specific to information about customers,
be they individuals or companies.

In our banking example, the “parties” stored in the database could be customers of the bank, employees of the
bank, other financial institutions the bank does business with and vendors the bank uses to complete its inventory
of capabilities.

The key features we are looking at are:

•	 Knowing what kind of information needs to be stored about parties. The kind of information we need to store
is based on their role and the relationship between the company maintaining the party directory. The kind of
information we need about customers is different from what we need to store about bank employees. What we
need to store for a checking account holder is different from what we need to store about credit card holders.
The same party could have different roles. E.g., a company could be a customer of a bank, as well as a vendor.

•	 Keeping the data safe, following all data privacy, retention and protection laws. E.g., Sensitive data must be stored
encrypted. It must only be provided when there is a legitimate need for the data.

•	 Based on an understanding on the nature of data, decide what data needs to be refreshed or reviewed periodically.
For example, date of birth or government-issued IDs do not need to be refreshed, but contact details, employment
details and salaries would need to be.

•	 Lineage of the data is understood. The system needs to know where the data came from and the controls used to
ensure the quality of the data. Clearly call out less trustworthy data, and do not provide it when asked for data used
for decision making.

In the design, we want to focus on how we can address drawbacks identified in the “observations” section: breaking
out of the GIGO paradigm/business knowledge is retained.

9.3.1 Setup of the Capability

Party & legal entity directory

Master list of
legal entities

Events on
entities

Lineage of
facts

Metadata
about facts

Task data

In
terp

ret

Information

U
n

d
erstan

d

Knowledge Knowledge
about facts

Knowledge
about usageHow?

Why?

What?

Task based
capability

Automated
actions

Product management

Regulatory compliance
checks

Set up capability
to “store” &
“serve” data

• What facts to we need to
 store for each service
 we offer ?

• What needs to be encrypted?

• Who can retrieve the data?
 What can we return?

• How long should data
 be retained?

• Tasks that we need to
 support in this capability

• Master list of all products
 supported
• Services offered
• Customer segments
• Applicable regs

• KYC data requirements
 for services

• Data retention policies

• Data encryption policies

• Data privacy policies

Here, we have implemented an agent to do what groups of business and technology SME’s would normally work on.
The agent asks the questions that we need answered and sets up the capability based on the answers.

If regulations change or if a new product is created, we just need to run the agent again, and it will revise the capability
setup.

| 17

9.3.2 Usage Scenario

Presentation
Layer

Capability
Layer

Intelligence
Layer

Generate a UI to
capture the
unique data
elements

Add the context
information

required

User interface

Product to be
opened is selected

Product
management

Services provided
by the product are

identified

Find out what
information needs

to be captured
Why?

What?

Party & legal
entity directories

Task delivery
guarantee agent

• Entity
• Facts about entity

• Which account is being
opened?

• Which service (s) need the data
• Internal ID for party
• Audit information

Customer’s VA
helping with

account opening

Bank’s IA that is
working with

customer’s VA

• Need to capture customer’s
data because we cannot
source it from anywhere (this is
a net new customer)

What data can we
find from trusted

sources?

What disclosures
are required

Why?

What?

Information we
want to capture

Approvals we
need to get to
pull external

data

Prompts
appropriate to
the customer

Regulatory
compliance

checks

Party & legal
 entity

directories

Figure 16: Interactions with the service domain

The intelligence layer plays a key role in making this work. The agents in this layer are responsible for talking to the
other service domains and performing the tasks that would normally involve a human talking to another human.
Because of the speed at which agents can run, the ecosystem can perform in real-time tasks that normally take
months of development, with armies of teams talking to each other.

It is important to note that the UI generation is not meant to be very advanced or onerous to build. The superset of data
that can be captured would be known ahead of time, and the developers can cater to all possible fields and data types.
The agent can then switch fields on or off as required. Similarly, placeholders can be provided for disclosures and
educational prompts.

10. In Conclusion
In this paper, we hope we have highlighted the transformative impact of AI on information and knowledge management.

These technologies need to build on the still ongoing transformations driven by APIification of applications, Internet of
Things and the drop in cost of information and knowledge. AI used correctly can help reverse the loss of knowledge
and traditional experts.

18 |

Figure 17: Interactions in a loan application

Figure 18: Externalized data within the enterprise

We already know that the next generation of applications will embrace Intelligent Agents and Virtual Assistants
to increase productivity. We believe if used as described in this article, they can directly address some of the
shortcomings of our existing ecosystems.

11. Appendix
11.1 Loan Application – How Permission to Share Data is Handled

Customer

Bank

Identification
permission
to retrieve
credit history

Bank

Credit agency

Credit history

Customer

Bank

Loan

Permission
to share
credit history

Bank

Credit agency

Credit history

11.2 Shared Data Within the Enterprise
Legacy “core” systems typically encapsulated both data and functionality. The current best practice is to implement
“microservices” that are focused on “bounded domain contexts” – i.e., a single business capability. Instead, imagine
a world where we hold data without any associated functionality. We wrap the data in a service that manages the
“persistence” of data. [See appendix for details on the persistence layer elements: 7.2 Persistence store types]

 Events Ledger

Process instance

Customer Account
Orders &
requests

Statements Payments Inventory

OnboardingSupply chain order
management

Purchases

Generalized
persistence

management

Semantic
data layer

Process layer

Catalog/Master Transaction

| 19

About Mphasis
Mphasis’ purpose is to be the “Driver in the Driverless Car” for Global Enterprises by applying next-generation design, architecture and
engineering services, to deliver scalable and sustainable software and technology solutions. Customer centricity is foundational to Mphasis, and
is reflected in the Mphasis’ Front2Back™ Transformation approach. Front2Back™ uses the exponential power of cloud and cognitive to provide
hyper-personalized (C = X2C2

TM = 1) digital experience to clients and their end customers. Mphasis’ Service Transformation approach helps
‘shrink the core’ through the application of digital technologies across legacy environments within an enterprise, enabling businesses to stay
ahead in a changing world. Mphasis’ core reference architectures and tools, speed and innovation with domain expertise and specialization,
combined with an integrated sustainability and purpose-led approach across its operations and solutions are key to building strong relationships
with marquee clients. Click here to know more. (BSE: 526299; NSE: MPHASIS)

www.mphasis.com

VA
S

30
/0

5/
25

 U
S

LE
TT

ER
 B

AS
IL

 9
57

2UK
Mphasis UK Limited
1 Ropemaker Street, London
EC2Y 9HT, United Kingdom
T : +44 020 7153 1327

INDIA
Mphasis Limited
Bagmane World Technology Center
Marathahalli Ring Road
Doddanakundhi Village, Mahadevapura
Bangalore 560 048, India
Tel.: +91 80 3352 5000

For more information, contact: marketinginfo.m@mphasis.com

Copyright © Mphasis Corporation. All rights reserved.

USA
Mphasis Corporation
41 Madison Avenue
35th Floor, New York
New York 10010, USA
Tel: +1 (212) 686 6655

11.3 Persistence Store Types
Nearly all of the data that we handle within enterprise applications can be thought of as being persisted using one of 5
different patterns. Each pattern has its own wrapper used to manage how data is created or maintained.

Transaction

Catalog/Master

• Mint identity & create
• Update
• Soft delete
• Purge history

Events

• Record
Ledger

• Record financial
impact

Process instance

• Initiate
• Work the queue/item
• Track commitments

• Post

Catalog:

As Catalog/master: E.g.: list of customers, list of accounts

Events: e.g., customer service request, end of business day, hiring of an employee

Transaction: e.g., purchase of raw material, reservation of goods & eventual sale

Ledger: e.g., general ledger of the company, asset inventory

Process instance: e.g., purchase order, opening of a new account

Each source of data requires its own semantic model. We need combinations of persistence stores for each kind
of data.

E.g., Customer: we have a catalog of customer, and event stores of customer-related events such as maintenance
activities, sales, account creation, etc.

We can now create processes by implementing logic that interacts with these different data stores.

